Product Description
Flexible flex Fluid Chain Jaw flange Gear Rigid Spacer PIN HRC MH NM universal Fenaflex Oldham spline clamp tyre grid hydraulic servo motor shaft Coupling
Product Description
The function of Shaft coupling:
1. Shafts for connecting separately manufactured units such as motors and generators.
2. If any axis is misaligned.
3. Provides mechanical flexibility.
4. Absorb the transmission of impact load.
5. Prevent overload
We can provide the following couplings.
Rigid coupling | Flange coupling | Oldham coupling |
Sleeve or muff coupling | Gear coupling | Bellow coupling |
Split muff coupling | Flexible coupling | Fluid coupling |
Clamp or split-muff or compression coupling | Universal coupling | Variable speed coupling |
Bushed pin-type coupling | Diaphragm coupling | Constant speed coupling |
Company Profile
We are an industrial company specializing in the production of couplings. It has 3 branches: steel casting, forging, and heat treatment. Main products: cross shaft universal coupling, drum gear coupling, non-metallic elastic element coupling, rigid coupling, etc.
The company mainly produces the industry standard JB3241-91 swap JB5513-91 swc. JB3242-93 swz series universal coupling with spider type. It can also design and produce various non-standard universal couplings, other couplings, and mechanical products for users according to special requirements. Currently, the products are mainly sold to major steel companies at home and abroad, the metallurgical steel rolling industry, and leading engine manufacturers, with an annual production capacity of more than 7000 sets.
The company’s quality policy is “quality for survival, variety for development.” In August 2000, the national quality system certification authority audited that its quality assurance system met the requirements of GB/T19002-1994 IDT ISO9002:1994 and obtained the quality system certification certificate with the registration number 0900B5711. It is the first enterprise in the coupling production industry in HangZhou City that passed the ISO9002 quality and constitution certification.
The company pursues the business purpose of “reliable quality, the supremacy of reputation, commitment to business and customer satisfaction” and welcomes customers at home and abroad to choose our products.
At the same time, the company has established long-term cooperative relations with many enterprises and warmly welcomes friends from all walks of life to visit, investigate and negotiate business!
How to use the coupling safely
The coupling is an intermediate connecting part of each motion mechanism, which directly impacts the regular operation of each motion mechanism. Therefore, attention must be paid to:
1. The coupling is not allowed to have more than the specified axis deflection and radial displacement so as not to affect its transmission performance.
2. The bolts of the LINS coupling shall not be loose or damaged.
3. Gear coupling and cross slide coupling shall be lubricated regularly, and lubricating grease shall be added every 2-3 months to avoid severe wear of gear teeth and serious consequences.
4. The tooth width contact length of gear coupling shall not be less than 70%; Its axial displacement shall not be more significant than 5mm
5. The coupling is not allowed to have cracks. If there are cracks, it needs to be replaced (they can be knocked with a small hammer and judged according to the sound).
6. The keys of LINS coupling shall be closely matched and shall not be loosened.
7. The tooth thickness of the gear coupling is worn. When the lifting mechanism exceeds 15% of the original tooth thickness, the operating mechanism exceeds 25%, and the broken tooth is also scrapped.
8. If the elastic ring of the pin coupling and the sealing ring of the gear coupling is damaged or aged, they should be replaced in time.
Certifications
Packaging & Shipping
Materials Used in Manufacturing Grid Couplings
Grid couplings are designed to withstand high torque and provide flexibility while transmitting power in various industrial applications. The materials used in manufacturing grid couplings are chosen for their mechanical properties and durability. The common materials include:
- Cast Iron: Cast iron is a popular choice for the grid, hub, and outer flange components of the coupling. It offers excellent strength and wear resistance, making it suitable for heavy-duty applications.
- Steel: Steel is often used for the grid element or grid springs. It provides the required flexibility and resilience to handle misalignments and shock loads effectively.
- Alloy Steel: Alloy steel may be used for certain high-performance grid couplings. It offers enhanced strength and toughness, making it suitable for demanding industrial environments.
- Stainless Steel: Stainless steel is employed when corrosion resistance is a primary concern. It is commonly used in couplings for applications in corrosive or hygienic environments.
- Non-Metallic Materials: Some modern grid couplings use non-metallic materials, such as high-strength composites or synthetic polymers, for the grid element. These materials offer excellent dampening properties, reduce noise, and prevent electrical conductivity.
The specific material selection depends on factors like the application requirements, environmental conditions, and the level of load and torque the coupling needs to handle. Manufacturers carefully engineer grid couplings to ensure they meet the performance demands of the intended application while providing reliable and efficient power transmission.
“`
What are the temperature and speed limits for different motor coupling types?
The temperature and speed limits for motor couplings vary depending on their design, materials, and intended applications. Below are general guidelines for different motor coupling types:
1. Flexible Couplings
Flexible couplings usually have temperature limits ranging from -40°C to 120°C (-40°F to 248°F). The speed limits for flexible couplings typically range from a few hundred RPM (Revolutions Per Minute) to several thousand RPM, depending on the size and design.
2. Rigid Couplings
Rigid couplings can handle higher temperatures, often ranging from -20°C to 150°C (-4°F to 302°F). Their speed limits are generally higher and can extend into tens of thousands of RPM.
3. Universal Couplings (Hooke’s Joints)
Universal couplings have temperature limits similar to flexible couplings, ranging from -40°C to 120°C (-40°F to 248°F). The speed limits for universal couplings are usually lower compared to flexible or rigid couplings and are typically in the range of a few hundred to a few thousand RPM.
4. Gear Couplings
Gear couplings are capable of handling higher temperatures, ranging from -10°C to 200°C (14°F to 392°F). The speed limits for gear couplings are also high and can extend into tens of thousands of RPM.
5. Disc Couplings
Disc couplings have a broader range of temperature limits, usually from -50°C to 150°C (-58°F to 302°F). Their speed limits are typically in the range of several thousand RPM.
6. Grid Couplings
Grid couplings typically have temperature limits ranging from -20°C to 120°C (-4°F to 248°F). The speed limits for grid couplings vary but can be in the range of several thousand RPM.
It is essential to consider the specific manufacturer’s specifications and recommendations for each motor coupling type, as they may vary based on construction materials, lubrication, and other factors. Operating the couplings within their specified temperature and speed limits ensures optimal performance and extends their service life.
“`
Are Grid Couplings Suitable for High Torque and Misalignment Conditions?
Yes, grid couplings are well-suited for high torque and misalignment conditions in industrial applications. They offer several features that make them an excellent choice for such conditions:
- High Torque Capacity: Grid couplings are designed to handle high torque loads, making them suitable for heavy-duty industrial machinery and equipment.
- Misalignment Tolerance: Grid couplings can accommodate both angular and radial misalignments between the connected shafts. This ability to tolerate misalignments is crucial in industrial settings where perfect alignment may not always be possible.
- Vibration Damping: The serrated grid element in grid couplings acts as a vibration damper, absorbing shocks and vibrations that can occur during high-torque operation. This feature helps in reducing noise levels and ensuring smoother machinery performance.
- Shock Load Absorption: Grid couplings are specifically designed to absorb shock loads, which are common in industrial environments. This capability protects the connected equipment from sudden overloads and prevents damage to the machinery.
- Torsional Flexibility: The flexible grid structure of the coupling provides torsional flexibility, allowing it to compensate for torsional vibrations and torque spikes that often occur in high-torque conditions.
Grid couplings are commonly used in applications where high torque is required, such as in pumps, compressors, mixers, and other heavy machinery. Additionally, their ability to handle misalignments makes them suitable for various industrial settings where precise alignment may be challenging.
When properly installed and maintained, grid couplings provide reliable performance in high-torque and misalignment conditions, contributing to smoother machinery operation and extended equipment life.
editor by CX 2023-09-27